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INVESTIGATION OF THE SHOCK ADIABAT OF QUASITRANSVERSE SHOCK WAVES 
IN A PRESTRESSED ELASTIC MEDIUM* 

A.G. KULIKOVSKII and E.I. SVESHNIKOVA 

Weak quasitransverse shockwaves being propagated in the prestressed state are 

considered in an isotropic nonlinearly elastic medium. Their propagation velocity 

is found /l/ for such waves and the manifold of states behind the shock is investi- 

gated for a given state ahead of it (the shock adiabat). An investigation of the 

shock adiabat is performed below for quasitransverse waves and the location of 

evolutionary sections in the plane of running shear strains. The influence of in- 

itial strains is taken into account more exactly. 

1. Formulation of the problem. A nonlinearly elastic medium is given by the func- 

tion 

Here Uis the internal energy per unit mass of the medium, p0 is the density in the unstres- 

sed state, Eij are the strain tensor components, tui are the displacement vector components in 

the unstrained basis, and Sis the entropy; summation over duplicate subscripts is assumed. 

The Lagrange coordinate system & is rectangular and Cartesian in the unstressed state. The 

axis 5, is selected so that the surfaces of discontinuity at different times would coincide 

with the coordinate surfaces 5, = const. The quantity W = d&ldt characterizes the velocity 

of the discontinuity in the Lagrange variable 5,. 

Only i3w,laT;, can undergo a discontinuity of the shock surface, the remaining &+/a&,a = 

192 retain their initial values and characterize the initial strain Eij- which is consider- 

ed given. It is convenient to introduce the notation &+/a& = Us. then @ = @ (Utr S, Eij_). 

Conditions on the discontinuity 

(1.1) 

are written down in /2/ (see /l/ also). Here [a] = n* -a- is the difference between the 

values of the quantity a behind and before the shock. These relationships can be used to 

find the states behind the shock and to determin the change in entropy Sin the shock for a 

given velocity of the discontinuity W. 
Weak intensity (IILk small) waves beingpropagatedin a slightly strained initial state 

(Eij- small) will be considered. In this case one quasilongitudinal and two quasitransverse 

waves exist /I/. Here only quasitransverse waves as those studied least will be investigated. 

For a correct description of the nonlinear effects in quasitransverse waves, fourth order 

terms in the strain /2/ 

Q = 'i,hI,z + PI, + BIIZZ + yl, + 611% + EI,2 
poT, (S - S-) + const 

I, = &ii, I, = Eikt?ik, I, = EijEjk&ki 

should be taken into account in the function 0. 

It is seen from (1.1) that when studying discontinuities, only terms starting with the 
quadratic in [u,] are important in the expansion of CD, and their coefficients can be con- 
sidered independent of S. The notation ~1 = U, u2 = V, U% = w, ul- = u, ~2~ = V will be used 
later, wherein the function UI hasthe form 

0 = @,o (Se, efj-) + g (.y-, Eij- ) 14J + PoTo(S - S-) + ~([~kl&j') 

'y ((Uklr Eij-) = ‘/z ((h + 24 bl” + f [U12 + g b12) + 
(1.2) 
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2puV Iul [VI + 2b Iwl (6’ [ul + V M) -I- 

([ul’ + W) (pfJ lul + pV [cl + b [td) f ‘!a p ([ul’ + [e]?)~ 

2fJ = h- + 2P + p + v,y, p = ‘i,h t- 11 + B + v,y +- 5 

f = P + 2bI1- + p (3U2 + V*) - (2~ + 3i,y) E22- 

g = I” + 2bZl-+ p (Uz + 3117 - (2~ + 3/2v) E,~- 

Only those fourth degree terms in du.,.'dEj are written down for the functions (I, and 'I' 
which are needed for the investigation of quasitransverse waves. The expression presented 
for y takes account of terms of a total fourth degree in Ill!. 1 and etj - (in contrast to /I/ 
where there was always a limitation to just linear terms in Cl, -1. 

2. Equation of the shock adiabat. The equation of the shock adiabat, i.e., the 
equation describing the set of states of the medium behind the discontinuity, is obtainedfrom 

the sysyem (1.1) for quasitransverse shockwaves in the plane UU: 

(22 + 222 - P) (Uv - VW) -t 2G (u - U) (v - V) = 0 (E.1) 

G = (2~ + “I,y) (cps- - ell-)/x, R2 = U2 + V2 

x = IL + (P + B + 3/,y)2@. + CL) - 2E = b2@ + P) - 2p 

The point U, V displays the initial state ahead of the shock on the uu plane. The 
change in the longitudinal strain component at each point of the line (2.1) is evaluated by 

means of the formula in which U, V,w- enter in the form of the additive constant 

w = UI- + bR2/(h + CL) - b (u’ + u2)/(h + p) 

Let us note that exactly the same relation hold in simple waves /I/. The elastic proper- 
ties of the material enter into (2.1) only in terms of the coefficient G which can always 

be made non-negative by an appropriate selection of the numbering for axes & and 5,. For 
G#O it is possible to go over to new variables ti = u/l/c 5 = v/1/??,, whereupon the factor 

G in the last term in (2.1) becomes one, and the shock adiabat equation (2.1) becomes uni- 

versal for all elastic media 

Fig.1 

(2 - 2 - R*) (UU - VC) + 2 (ti - 0) (I: - V) == 0 

The form of (2.1) is such 

that curves with initialpoints 

U, V symmetric with respect 

2 v 

to any of the axes U,V are 

F,.+. 
-<. 

N. 
symmetric to each other. Hence, 

\ 

v7 ;' 

it is sufficient to investigate 

'\ the shock adiabat properties 

\ .\ 

\ ‘1. 

just for the case U SO, V> 0 

(Fig.1). The curve (2.1) pas- 

ses through the initial point 

U, V and two symmetric points 

relative to the U, v axes: 

M (- Ii, V) and N (U, -V). At 

Y x@ 2 
the initial point the curve has 

the re-entry point noted in 

Fig.1 by the two letters A and 
Fig.2 A', which is convenient for 

parametric representation of 

the equation of the curve. The 

tangents to the intersecting branches of the curve are mutually perpendicular, their direc- 

tions yield the change in quantities in the infinitely weak or simple waves /3/: 

tge,= 
I” - f,r” _ c fB 

zflv ’ 
B=[(V2--U* - G)* + 4U2V2]‘~* (2.2) 

@I and 00 f n/2 are the angles between these directions at the point CJ, V and the u axis). 

The curve is a loop with tails going to infinity along the asymptote v = V(dU - 2GIR'),whose 

direction is parallel to the radius-vector of the initial point. The slope of the asymptote 

to the u axis is always greater than I&. One of the shock adiabat tails intersects the 

asymptote. The ordinate us of the point of intersection is given by the expression 
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The dashes in Fig.2 depict the line h(u, v) = 0 in the UV Plane. If the initial point 

u, v is in the dmain where h> 0 (outside the curve h=O in Fig.2), then the lowerbranch 

of the tail intersects the asymptote, otherwise the upper branch intersects. When the sign 

of h changes, the point of intersection passes through infinity from one branch to the other. 

The curve (2.1) always has three intersections with the U axis. They are the roots of 

the equation v(uz- R')- ZG(V - v) = 0, and as is seen from an investigation of this expres- 

sion, are arranged as follows: VI< - R, O-C v,< V, US> R. The point with coordinates O,vc 

is a singularity for integral curves of simple waves /3/, it is always within the loop. 

The points of intersection of the curve (2.1) with the u axis are determined by the equa- 

tion u (IL' - Re) + 26 (u - U) = 0. It certainly has on real positive root in the range V < 

US< R. - The other two negative roots will exist if the initial Strains satisfy the inequal- 

ity 

p zs UzGa - I(Re - 2G)/31J < 0 (2.3) 

The points U, V, subject to the condition (2.3), lie outside the curve q = 0 depicted 

in Fig.2 by the dash-dot line. In this case the shock adiabat (2.1) has three intersections 

with the u axis: one at the tail and two in the loop. If the inequality (2.3) is not satis- 

fied, there is just one intersection on the tail. When (2.3) becomes an equality, the loop 

touching the u axis at the point u.,, = - ((R2 - 2G)/3J% = - (UG)'~J. 

3. Condition of entropy non-decrease. The shock adiabat (2.1) is the set of 

states into which it is possible to go from the initial stage U,5' by a jump while satisfy- 

ing the mass, momentum, and energy conservation laws. But only jumps with nondecreasing en- 

tropy [S]> 0 have the right to exist. An expression for [Sl has been found earlier /l/ 

Sp,T, IS] = - x ((u - ~r)n + (u - v)lj (u” + z? - R*) (3.1) 

For x>O points within the circle 

u2 $ u= = R2 (3.2) 

while for x (0 points outsie the circle correspond to entropy growth. On the circle itself 

L91 = 0. It is interesting to note that the condition IS] = 0 agrees with the condition 

[w] = 0. The entropy circle (3.2) intersects the shock adiabat at three points: A (U, v),xr 
(-U, V), N(lJ,-V) (Fig.1). The equation of the separating line (3.2) is independent of the 
material properties. The difference in the elastic properties of the medium is manifest in 

terms of the sign of the coefficient x. 

A medium with x>O will beexaminedin detail in this paper. Hence, everywhere later, 
with the exception of Sect.7 where all the results will be presented that refer to media with 

x < 0, we shall consider x > 0. 

The disposition of the shock adiabat relative to the circle (3.2) shows that there are 

no less than three entropy extremum points on the shock adiabat. One (the maximum) E is on 
the segment of the loop between A and 41, another (the minimum) His on the segment of the 

loop between Mand A’, and the third (a maximum) J is on the tail segment between A’ and .V. 
It will be shown later that there are no other extremum points. 

4. Evolutionary conditions for the shock. It has been shown /l/ that not all 
the points of the shock adiabat that satisfy the condition [S];-0 yield actually realizable 
shocks, since they do not all satisfy the evolutionary conditions which are needed for cor- 

rectness of the boundary conditions on a discontinuity 

C?- g w 4 c*+. CL+ \(. w < CQ- (4.1) 

cl- < w < CL+. 0 < w < cz- 

Here Li'is the shock wave velocity, c,-, ci+ are the characteristic velocities in the 
states before and behind the shock, respectively. The numbering ci is chosen that Cl < cz < 
c.% where CQ corresponds to a quasilongitudinal wave and cl and rz to two quasitransverse 
waves. We call the discontinuities satisfying the upper system of two inequalities (4.1) 
fast while discontinuities satisfying the lower system, slow. 

We find an expression for the shock velocity from conditions on the discontinuity (1.1) 

a=poWz=ao-l/zx u2+v2--R2+~~+Vu+ 
I (4.2) 

c(U--)~-(:(U--)~+2[(T(u-(l)+V("_~)]1 
(u-U)%+ (U - V)l 1 

co = P + 2b1,-- (CL + S/~y)(erl- + .ssz-) 

Considering the shock intensity u - u,v- V to be infinitesimal, we hence find the 
characteristic velocities 
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pO (c;,~)' = a, - x {u" + uL 2 I/, [(u" - Us - G)z 4u’u”j’i.) 

p,, (c;,# = a, - x (R” & ‘i&I) 

(4.iI 

It is seenfrom (4.3) that c,‘ : c,- at the points ,M (-U, 1') and N (U, -V) which are 
symmetric with the initial point and lie ontheintersection of the adiabat with the entropy 
circle. The jump velocities at these points equal, respectively, 
and po)f',v' -2 a0 - x (R" - G)lZ. This means that for ti # 0 

p"lV,r,' = n.,, - 2 (,?'A- G)':! 

c& > Il'n,> cl*, 1 VI,, > c,f > c,* (4.4) 

and neither point illand A7 satisfies conditions (4.1). 

Let us verify satisfaction of conditions (4.1) for different parts of the adiabat (2.11. 

The jump velocity Wat each point of the adiabat is found in /l/ in the form of a function 

of one parameter, the polar angle 0 in the system coupled to the initial point 

a(0)=aO-~(R*-‘/~B)$ xB 
3s (ml+ n)(nz-m)-(nr-m)L-7Ull 

(1 + 2%) (n~-m)~ 

t = tg (0 - O,), m = V ~0s BO - U sin eo, 72 = Ucos B. t Vsin e. 

(4.5) 

A graph of the function u(e) and the cor- 

responding diagram on the c-, cT plane are dis- 

played in Fig.3 and assist in setting up the 

evolutionary sections on the shock adiabat. The 

diagram in Fiq.3b is qualitative in nature, and 

L31 -P--Iv I is just to illustrate compliance with the 
inequalities (4.1) on different sections of the 

+ shock adiabat. 
% The evolutionary conditions (4.1) are sat- 

isfied in the shaded squares in Fig.lib. The 
* 

Cl section of the curve between the points A and 

A’ in Fig.3 corresponds to a loop, the remain- 
ing parts of the curves to two tail branches. 

^- ^- ^- Motion along the curve from A to A'in Fig.3a 
a b corresponds to motion clockwise along theshock 

adiabat, and the points A and A’ themselves to 

Fig.3 
a double passage through the initial point U, V. 
The possible forms of the curves for different 

values of the initial strain are displayed in 

Fig.3 by solid and dashed lines. 

The form of the function a (@is such that its graph has no more than four intersection 

points upon intersecting any line CL = const , and therefore, the function a(e) has not more 

than three extremum points. The velocity extremum points equal three since these points co- 

incide with-e entropy extremum points in conformity with /l/, and there are not less than 

three according to Sect.3. The velocity extremum points appear to be the Jouquet points where 

the velocity of discontinuity coincide with one of the characteristic velocities behind the 
discontinuity /l/. The intersection of a curve displaying the change in w along the adjabat 

and the horizontal lines c = Cl+, c = c2+ corresponds to the Jouguet points in the diagram in 

Fig. 3b. Evolutionary sections certainly about the initial point A, A’ on the shock adiabat 

/4/. Line segments, represent @'going from the points A and A'into the shaded squares cor- 

respond to them in the diagram of Fig.3b. In order to connect these diagram segments (this 

part of the diagram corresponds to the loop of the adiabat in Fig.1) the iines af the 

characteristic velocities c+ (the two Jouguet points) must intersect twice. Then, still 

another Jouquet point, the point of the velocity maximum which lies between A'and Ncan still 

turn up on the rest of the curve corresponding to the two tail branches. The position of the 

characteristic points )\I and N (intersections of the adjabat with the entropy circle) is in- 

dicated in the diagram of Fig.3b in conformity with (4.4), from which it is seen that the 

point W = ca+ will be the Jouguet point on the tail. 

5. A property of the shock adiabat at the Jouguet points. We first note one 
obvious consequence of equations (1.1): at the Jouguet points the shock adiabat is tangent 
to the integral curve giving the change in the quantities in a simple wave whose velocity 

agrees with the velocity of the discontinuity in the space ur. Conversely, if the shock 

adiabat is tangent to the integral curve corresponding to a simple wave, then the point of 

tangency is a Jouquet point. 
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For the proof, we differentiate the first equation in (1.1) by considering the uj- con- 

stant 
($+3,q3uj)+duj = aAuk + da (~~1, CL = pa~v2 

it the Jouguet point (r reaches the extremum /l/ and da=O. The remaining terms show that 

the changes duP agree with the changes in a simple wave being propagated at the velocity IY= 
k%&. On the other hand, if the shock adiabat is tangent to the integral curve corresponding 

to a simple wave, then this means that the vector dq along the shock adiabat is parallel to 

the eigenvector of the matrix 8Wifa~rduj. The increment da+0 only upon SatiSfaCtion of the 
additional condition that the vector [uh] is parallel to the vector dlbk at the point under 

consideration. This condition is not satisfied at any point of the shock ad&bat under con- 
sideration, as follows from writing its equation in polar coordinates with respect to the 

initial point fll. Therefore, da=0 and the point of tangency is a Jouguet point. 

6. Location of evolutionary sections on the shock adiabat. We shall consider 
G>O, the case G = 0 is not considered here. For G> 0 apartof theloopfromtheinitial 

point A(U, V) to the point AL t--U, V) drops within the entropy circle, as does a part Of the 
tail from the initial point A’(U, V) to the point N(U,--I'? (Fig.1). Two evolutionary sec- 
tions, one on the loop and one on the tail, adjoin the initial point. The segment adjoining 
the initial point A’is terminated by the Jouguet point J, where W =ci+. It is seen from 
the diagram in Fig.3b that there can be one or two evolutionary sections on the loop . This 
depends on the quantity of roots for the function &'(aj- c%-, which, in conformity with (4.51, 
agrees with the number of roots of the cubic equation 

F (2) = 3J&C3 + (%a2 - 3m? - 2B)s' - :,zn.r - In? = 0 (6.11 

It certainly has one positive root yielding the point w =c2- on the tail of the adiabat out- 
side the entropy circle (Fig.3). Moreover, if the quantity D defined by the expression 

n~R(R,W)H*(R~--WW~ ll)- 16.2) 

Iis + 5R%) -!- GRW - 13R' -!- :$R%t Z!i 

R2 = RT’G, (r, = (li” - V’)/R’ j-l ,; w 1 I) 

B (8, o) = B/G = (R* i_ 2Jh + 1)“‘~ 

is negative, then there are still two negative roots for the polynomial (6.11, to which two 
points, where W = c,-, lying on the loop, correspond on the shock adiabat. In this case 
two evolutionary sections will be on the loop. One segment will start at the point A and 
terminate at the point F, where W = c,-, while the other starts at the Jouguet point E, 
where W = c,+ and terminates at the point Kwhere w = c*-. The graphs corresponding to 
this case are displayed by solid linesinFig.3. If D>O then there are not negative roots 
in the polynomial (6.1) and there is one evolutionary section on the loop, starting at the 
point A and terminating at the Jouguet point Kwhere W = cl+. This case is shown by dashes 
in Fig.3. The disappearance of D corresponds to the presence of a multiple root in the poly- 

nomial (6.1) and to merger of the evolutionary sections on the loop. 
The equation D = 0 defines the curve displayed by a solid line in Fig.2 and constructed 

from points found numerically, on the plane U/cG, V/m. Outside the curve D <0 and in- 
side D > 0. 

We I-KM find the position of the ends of the evolutionary sections in the plane UV. We 
first find the position of the entropy extremums that are simultaneously Jouguet points and 
points of velocity extremums, According to Sect.4 there are three such points: E,H,J (Fig. 
1). A simple but tedious calculation of the derivative of the entropy along the shockad- 
iabat shows that intersections of the shock adiabat with the axes u and u (Fig.1) are satis- 
fied at the points P,Q,I by the inequalities 

(g),<R ($),>o. (9) <o u I 

Because there are three entropy extremums ontheshockadjabat, it follows from the in- 
equalities presented that none lies in the first quadrant. Hence, It is evident that the 
point Hlies in the second quadrant, and the point J in the fourth. 

If the loop segment enters the third quadrant, then the point E where W = cl+ lies on 
it. 

Indeed, it follows from the symmetry of the problem that a solution of the simple wave 
type exists at which t'= 0. This simple wave corresponds to the characteristic velocity 
(this becomes evident iftheinitial point A of the shock adiabat is placed on the axis and 

Ed 

low amplitude discontinuities are examined). In the case under consideration the axis U, 
representing an integral curve corresponding to the simple wave, 
shock adiabat. 

intersects the loop of the 
Because the field of integral curves corresponding to simple waves has no 
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singularity within the third quadrant (these singularities lie on the c rixis ; :‘ a:. ~.i;~ 
points p=+m on the loop Segment of the shock ad&bat in the third quadrant., t_:ler~ shouiG 
be a point of tangency with the integral curve corresponding to CL. From what has been sai,? 
in the previous section, it fOllOWs that this Point in the third quadrant is the Jouguet point 
W = cl+ (the point E). 

If the shock adiabat is not enter into the third quadrant, then the point ELies in the 
second quadrant. If the shock adiabat is tangent to the u axis, then the point of tangency 
is theJouguetpoint E. 

The points Fand Kat which W = cp- always lie in the second quadrant if they are on the 
shock adiabat. 

TO show this we consider the shock adiabat passing throughsomeof these points as through 
the initial point. Because of symmetry of (1.1) with respect to the states before and behind 
the discontinuity, this shock adiabat passes through the point A. Hence, theJouguetcondi- 
tion W'=+(A) will be satisfied at the point A. Therefore, an entropy extremum should be 
at this point on the shock adiabat under consideration, which can be only a minimum since 
A"(F)>S(A),S(K)>S(A). However, it has been shown above that the point where the minimum 

entropy is achieved always lies on the quadrant adjacent to the initial point. Therefore, 
the points F and h'are inthesecond quadrant. 

Therefore, one evolutionary segment of the shock adiabat corresponding to fast waves al- 
ways starts at the initial point A (U = lJ>O, v = V > 0) and terminates at the Bouquet point 
J lying in the fourth quadrant within the entropy circle. 

If the initial point U, 1. lies inthedomain D.,, 'Ct (outside the solid curve in Fig.21, 
then there are two evolutionary segmentsontheloop.One corresponding toslowwaves startsatthe 
point A and terminates at the point F in which W = cp- which is alwaysinthe second quad- 
rant. The second, corresponding to fast waves, starts at the point Eand terminates at the 
point K. The point K at which CV=c,- always lies in the second quadrant. The point E at 
which IV = cl+ lies in the second or third quadrant, depending on whether the loop enters the 
third quadrant. This latter will occur if the initial point lies in the domain 4 10 (Out- 
si.de the dot-dash curve in Fig.2). 

If the initial point lies in the domain D )O, then there is one evolutionary section 
on the loop which is terminated by the Jouguet point E. Evolutionary sections of the adia- 
bat for media with x>O are displayed by heavy lines in Figs.1 and 3. 

Let us note that the evolutionary conditions (4.1) turn out to be stronger for the med- 
ium under consideration thanthecondition of nondecreasing entropy. In particular,purely 
transverse discontinuities with [wj = 0 are not evolutionary (the points bf and Iv on the 
adiabat, for which [sl = 0, correspond to these discontinuities). 

7. Media with x<O. By changing the numbering of the axes, it is again possible to 

make G> 0. Then the equation of the shock adiabat (2.11, and therefore, aLSO its form 

on the plane uu (Fig-l) are completely conserved. There remain theexpressions (4.21, (4.5) 

for the shock velocity W. Only in the formulas for the characteristic velocities (4.3) must 

the numbering for c,,? be replaced because of the change in sign of X so that as before there 

would be Cl <Ca* The equation of the circle on which [S] = 0 indeed retains its form. But 
the domains where ,$ is less and where sis greater thaninthe initial state change Places. 

For %<fJ those sections of the shock adiabat which turned out to be outside the entropy 

circle, part of the loop and two tails, can be realizable fromthe viewpoint of nondecreasing 

entropy. 

a 

Fig.4 Fig.5 
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It is easy to find the position of the Jouguet points where iv =CLi on the adiabat. 

These are the extremum points of the functions Wand s. They have already been found for 

X>O. And since x only enters as afactorinthe variable part of the functions W and S 

(additions to the main constant quantity because of the nonlinearity), then the extremumpoints 
remain as before, only the maximums are replaced by minimums, and Vice Versa. There will 

be three extremum points in all (Jouguet points): one maximum and two minimum points. The 
maximum point plies on the loop outsie the entropy circle in the second quadrant above the 

point M(--LI,V) (Fig.4). One of the minimum points J lies within the entropy circle on the 

tail in the fourth quadrant above the point N((I, -V). The other minimum point E of s and IL' 

isonthelowerbranch of the loop (within the S-circle) and is in the third quadrant if the 

loop intersects the u axis or in the second below the point Mif the loop does not intersect 

the abscissa axis. 
A graph of the change inthe jump velocity \Vas a function of the polar angle 8 is repre- 

sented in Fig.5a. It is seen there where the evolutionary sections should be located. They 

are marked off by heavy lines. To be graphic, a diagram of the change in w on the c-, c+ 

plane (Fig.5b) is also presented, which will aid in determining the quantity and position of 

the evolutionary sections. As before, the different possible forms of the curve as a func- 

tion of the initial strain U, V, G are displayed by continuous and dashed lines in Fig.5. It 
is seen at once from the diagram in Fig.Sb that W = cr+ at the point Hof the maximum, and 

we have LY = c?+ on the lower branch of the loop (the point E) and W = cl+ on the tail (the 

point J) at the minimum points., One of the evolutionary sections is the whole upper tail, 

starting from the point A’. It is entirely in the first quadrant (Fig.4). 

Still another evolutionary section CL is on the other branch of the tail, where is 

emerges beyond the limits of the entropy circle. An investigation analogous to Sect.6 shows 

that this section starts in the fourth quadrant and terminates in the third. Still other 
evolutionary sections will be on the outer part of the loop. There can be one or two depend- 

ing on how many roots are in W -c,-. In conformity with (4.51, they will be the roots of 

the equation 

F, (5) = n*ti + mnx2 + (3n* - 2m2 - 2B)s - 3mn = 0 (7.1) 

There can be one or three (Fig.5) depending on the sign of the discriminant D, of (7.1 

For D,>O equation (7.1) has just one root and its corresponding point is the end of 

the single evolutionary section on the adiabat loop. For D,<O there are three points F,H, 
K (Fig.4) on the loop, where Cc' = cI-. They are all in the second quadrant. The domain 
D,<O is dispalyed in the plane of the initial data in Fig.2 within the curve D,= 0 which 
has been found numerically. 

The evolutionary sections of the adiabat for media with x <Cl are denoted by heavy lines 
in Figs.4 and 5. 

8. Incompressible media. Let us note that incompressible, isotropic media enter, 

in particular, into isotropic media. The medium becomes incompressible if the quantity xAa 

is appended to any previously chosen expression for @, where A is the volume expansion co- 
efficient 

A = (1 + 21, + 2z12 - 21, + 41~1~s _ 41,r, + 8,319)1,, _ , 

and the quantity 2 then tends to infinity. The addition of the quantity mentioned results 
in achangeinthe coefficients ir the expression for0 such that there will be h + 236 in 

place of h, /3 - 22 in place offi, 6 + Xin place of 6, E x in place of 5. The remaining 
coefficients as well as b,p, f,g do not change in the expression for '4. Therefore, the pas- 
sage to incompressible media can be performed if the quantity h tends to infinity in the 
expressions for Y and all the subsequent formulas while the coefficients p, @,v, b,p,f, g are 

unchanged. This results in x = -2p and w = w- being set into the formulas presented ab- 
ove for incompressible media. All the deductions will correspondingly be as before. 

1. 

2. 

3. 
4. 
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